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We study the Kitaev model on a ladder network and find the complete spectrum of the Hamiltonian in closed
form. Closed and manageable forms for all eigenvalues and eigenvectors allow us to calculate the partition
function and averages of nonlocal operators in addition to the reduced density matrices of different subsystems
at arbitrary temperatures. It is also discussed how these considerations can be generalized to more general
lattices, including three-leg ladders and two-dimensional square lattices.
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I. INTRODUCTION

There are very few exactly solvable spin systems in the
sense that their complete spectra can be determined in closed
form. The most notable one is the Ising model in transverse
field or the XY model,1 where the spectrum can only be
determined with the help of highly nonlocal Jordan-Wigner
transformation, rendering the calculation of correlation func-
tions very difficult. The other example is the Heisenberg spin
chain, where the energy eigenvalues and eigenvectors can
only be determined implicitly by solving the system of
coupled nonlinear Bethe ansatz equations.2,3 For a large class
of spin models, only the ground state can be found by the
matrix product approach.4–10 Having an exactly solved quan-
tum many-body system, in the sense of complete determina-
tion of its spectrum, is always a fortunate situation, which
enables one to make a detailed study of thermal and dynami-
cal properties. It also allows one to solve other related sys-
tems by perturbation techniques.

While the study of many-body systems has been tradition-
ally done in the community of condensed-matter and statis-
tical physics, and also by mathematical physicists interested
in exact solutions, in recent years, these systems have at-
tracted a lot of attention from the quantum information com-
munity. The reason is at least twofold: on the one hand, an
array or lattice of two-level quantum systems �qubits� is the
natural candidate for implementation of quantum informa-
tion processing tasks and on the other hand, concepts and
tools developed in quantum information,11 which are mainly
aimed at characterizing the nature of quantum states such as
their entanglements, have been quite useful in understanding
different phenomena in such systems, i.e., quantum phase
transitions.12,13

While in condensed-matter physics, the focus is on the
Hamiltonian and interactions, in quantum information, the
emphasis is on the quantum states and their properties, i.e.,
their bipartite and multipartite entanglements. Needless to
say, we are not always in the happy situation to have both a
physically plausible Hamiltonian on the one hand and an
easily obtainable spectrum on the other. For example, in the
matrix product formalism, although we can construct ground
states with desired symmetries, it is not guaranteed that the
parent Hamiltonians are of real experimental interest. Fortu-
nately with the recent advances in optical lattices and cold
atoms, we have more freedom in manipulating systems of

many-body two-level systems �qubits�. Therefore there is
less reservation than before in proposing many-body Hamil-
tonians whose ground states or the low-level excited states
may have desirable properties for implementation of quan-
tum information processing.

In this regard, an interesting model has been recently
proposed,14 which has the very desirable feature of showing
topological order and anyonic excitations. This was the first
model for topological implementation of quantum computa-
tion, where qubits are encoded into the homological classes
of loops on a surface, which are hence resistant to local
errors. The important point is that the topological order is not
related to the symmetries of the Hamiltonian and it is robust
against arbitrary local perturbations, even those that destroy
all the symmetries of the Hamiltonian. We should stress that
at present, an implementation of the Kitaev model on a real
experimental many-body system may be quite out of reach
due to the four-body interactions between the spins; never-
theless, we find it instructive to investigate the properties of
this model that at present has mostly theoretical value.

On any lattice, the Kitaev model is defined by the Hamil-
tonian

H = − J�
s

As − K�
p

Bp, �1�

where J and K are positive coupling constants and the vertex
operators As and plaquette operators Bp are constructed from
Pauli operators X=�x and Z=�z as follows: As is the product
of all X’s on the links shared by the vertex s and Bp is the
product of all Z operators around a plaquette. These opera-
tors commute with each other for any geometry of the net-
work.

It is well known that the ground state of this model has
symmetries not inherited from the Hamiltonian but from the
topology of the surface on which the model is defined. On a
genus g surface without boundary, the ground state of model
�1� has 4g-fold degeneracy with a gap, which cannot be re-
moved by local perturbations. Therefore on such a surface,
the ground space can encode 2g qubits in a way where re-
sistance to errors is automatically ensured by the topology. In
recent years, there has been intensive activity on this model
and its variations and generalizations in many directions �see
the works in Refs. 15–25 and references therein for a
sample�. The ground states of the Kitaev model can be char-
acterized rather simply in a formal way. Since As

2=Bp
2 = I, the
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ground state is the one that is stabilized by all these opera-
tors, i.e., As�g ·s�=Bp�g ·s�= �g ·s�. One such state can be writ-
ten as �g ·s�=�CCz���, where ��� is a sea of spins in +x
direction and Czª�i�CZi is a product of flipping operators Z
around the closed loop C. If C is a homologically trivial
loop, i.e., if it is the boundary of a region on the surface, then
Cz can be expressed as a product of Bp operators. Since in
�g ·s� we are summing over all such loops, the action of any
Bp on �g ·s� leaves it invariant. Since any As commutes with
all Bp operators and As���= ���, it is immediate that
As�g ·s�= �g ·s� and hence �g ·s� is actually a ground state of
Eq. �1�. The other degenerate ground states are obtained
from �g ·s� by acting on it by product of flipping operators Zi
around nontrivial homology cycles. �Closed loops that are
not boundaries of regions are called homology cycles or just
cycles. On genus surfaces these are the same as noncontract-
ible loops, but on higher genus surfaces they are different.�

The excited states are formed by enacting on the ground
states by flipping operators along open strings and hence
creating two particles,14,26 called anyons due to their ex-
change properties. While the ground state of Eq. �1� is rather
simple and, in fact, its entanglement properties and that of
the related topological color codes27 have been studied in a
number of works,25,28 a complete characterization of the
spectrum is difficult due to the exponentially large number of
open string configurations. In other words, it is known that
any collection of open strings creates an excited state, but
determining the degeneracy of such excited states is not
simple due to the above-mentioned difficulty.

One may expect that on a lattice with a simpler structure,
these problems can be overcome. In this regard, spin ladders
may be of interest not only due to their own interest as sys-
tems interpolating between one- and two-dimensional sys-
tems but also since they can be used for approximate solu-
tion of the more physical two-dimensional systems when the
latter can be approximated as an array of ladders with neg-
ligible couplings between them.

In fact, the simple structure of ladders facilitates the study
of many interesting phenomena that are otherwise difficult to
study in general lattices. For example, one of these phenom-
ena is the dynamics of defect production in passing a critical
point when a phase transition occurs.29 This is usually cap-
tured in what is known as the Kibble-Zurek scaling law.
However it has recently been shown,30 through a detailed
study of a ladder system, i.e., the Creutz ladder,31 that in
systems with topological order, edge states can dramatically
modify this scaling law.

It is the purpose of this paper to make a complete study of
the Kitaev model on spin ladders. The ladder with periodic
boundary condition in one direction has the topology of a
cylinder and its ground state is doubly degenerate. We will
determine the energy spectrum completely and from there we
calculate the partition function and the total entropy. Then
we will determine the reduced density matrices and entropy
of various subsystems, where it is found how the cylinder
topology affects these properties. Finally we discuss briefly
how to extend the method to three and higher leg ladders and
eventually to the two-dimensional square lattice.

The structure of this paper is as follows. In Sec. II we
explain the model and in Secs. II A–II C, we calculate the

spectrum, the partition function, and the thermal averages of
nonlocal operators. In Sec. III we calculate the density ma-
trices and entropy of various subsystems, which show among
other things that there is no entanglement between any two
spins at any temperature. We will then show in Sec. V how to
extend this method for obtaining the spectrum of the two-
dimensional square lattice. The paper ends with a discussion,
in which we specially highlight the relation with other works
done in the Kitaev model, and an outlook on future research.

II. KITAEV MODEL ON THE LADDER NETWORK

Consider a two-leg ladder network with length N with the
labeling of links as shown in Fig. 1, where we use the super-
scripts + and − to denote the vertices pertaining to the lower
and upper legs. For this ladder, the vertex and plaquette op-
erators take the following form:

Ai
+
ª Xi�−1XiXi�, Ai

−
ª Xi�−1XiXi�

, Bi = ZiZi+1Zi�Zi�
.

�2�

Throughout the paper, we use the generic names As and Bp
for pointing to general vertex and plaquette operators in a
network and the names indicated in Eq. �2� for pointing to
specific operators in the ladder. For a closed surface the op-
erators in Eq. �1� are constrained by the relations �sAs
=�pBp= I; however, for the ladder, which is a surface with
two boundaries, the second constraint does not hold and we
are left with

�
s

As = I . �3�

Therefore the operators in Eq. �2� are 3N−1 commuting op-
erators in the 23N-dimensional Hilbert space of the ladder.
They all commute with the Hamiltonian and hence the
ground state is twofold degenerate. The following nonlocal
operators play an important role. Here

Wz ª �
i�

Zi� Wx ª �
i

Xi. �4�

It can be clearly seen that they commute with each other and
also with the Hamiltonian,

�Wx,Wz� = �H,Wx� = �H,Wz� = 0. �5�

They correspond to a cycle around the ladder. Both of them
square to 1 and hence have eigenvalues �1. As we will see
the operator Wz generates the twofold degeneracy of the
ground state. Why the operator Wx does not have a similar
role? In view of the above commutation relation, one may
ask why it does not generate another kind of degeneracy. The

FIG. 1. �Color online� The labeling that will be used in the text
for the links on the ladder.
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reason will appear in the end of Sec. II B, where we derive
the full spectrum.

A. Ground and top states

It is clear from Eq. �1� that the ground state is a state with
the property

As��0� = ��0�, Bi��0� = ��0�, ∀ s,i . �6�

To find the explicit form of the ground state, we use the
property Bi

2= I that is equivalent to Bi�1+Bi�=1+Bi and in-
troduce the state

��0� ª
1

	2N�
i

�1 + Bi���+� , �7�

where ��+�ª �+��3N is a product of all spins in the
�+�ª �x ,+� direction. Note that X�� �= � �� � and Z�� �
= �� �. It is obvious that ��0� satisfies condition �6� and
hence is a ground state. The other ground state is obtained
from ��0� by the action of the operator Wz, which corre-
sponds to the only nontrivial homology cycle of the surface,
that is, ��0� and ��0��ªWz��0� form the doubly degenerate
ground states of the model,

H���0�, ��0��� = − N�2J + K����0�, ��0��� . �8�

Note that Wz, being a cycle, cannot be expressed as any
combination of product of plaquette operators Bi, which are
all homologically trivial. This shows that the two states ��0�
and ��0�� are independent.

The top state, the state with the highest energy, is the one
that is an eigenstate of all the vertex and plaquette operators
with eigenvalues of −1. It can be readily verified that the
following state is such a state:

��top� ª
1

	2N�
i

�1 − Bi���−� , �9�

where ��−�= �−��3N is the product of all spins in the
�−�ª �x ,−� direction in the network. The other degenerate
state is obtained by the action of the operator Wz, i.e.,
��top� �=Wz��top�. The highest energy will be Etop=N�2J
+K�,

H���top�, ��top� �� = N�2J + K����top�, ��top� �� . �10�

B. Complete spectrum

We can now construct the full spectrum. To this end we
note that for any arbitrary state ���, the state,

�
i

�1 + �− 1�liBi����, li = 0,1,

is an eigenstate of all the plaquette operators, Bj, with eigen-
values �−1�lj. The reason is the relation Bj�1�Bj�
= � �1�Bj�. Hereafter we use the abbreviation Bl for such a
string of operators,

Bl ª �
i

�1 + �− 1�liBi� . �11�

These operators satisfy

BlBl� = 2N�l,l�Bl. �12�

To construct states that are eigenstates of the vertex operators
and at the same time be independent, let us define the fol-
lowing operators:

	r,s ª �
i

Zi
riZi�

si , �13�

where the sequence of ri and si are 0 or 1 and the labelings
are those shown in Fig. 1. Figure 6 shows the links that
contribute to the construction of such operators. It is impor-
tant to note that the links of only one leg are among this set.
Now let us define

��l,r,s� ª 	r,s��l� ª
1

	2N
	r,sBl��+� . �14�

The operators in Eq. �13� have simple commutation relations
with the vertex and plaquette operators. One can verify the
following relations:

Bj	r,s = 	r,sBj ,

Aj
−	r,s = �− 1�rj	r,sAj

−,

Aj
+	r,s = �− 1�rj+sj−1+sj	r,sAj

+. �15�

This leads to

Bj��l,r,s� = �− 1�lj��l,r,s� ,

Aj
−��l,r,s� = �− 1�rj��l,r,s� ,

Aj
+��l,r,s� = �− 1�rj+sj−1+sj��l,r,s� . �16�

The above relations indicate that the states thus constructed
are eigenstates of Hamiltonian

H��l,r,s� = El,r,s��l,r,s� , �17�

where the energy is found from Eqs. �1� and �16� to be

El,r,s�J,K� = − �
j

�J��− 1�rj + �− 1�rj+sj−1+sj� + K�− 1�lj� .

�18�

In terms of Ising-like variables, Riª �−1�ri, Siª �−1�si, and
Liª �−1�li, which take values of �1, the energy can be re-
written in the form

El,r,s = − �
j

�JRi�SiSi+1 + 1� + KLi� . �19�

In the sequel we will use both the indices r ,s , l and R ,S ,L so
that no confusion arises. The states ��l,r,s� have 3N binary
indices and hence the number of such states is exactly equal
to the dimension of the Hilbert space; hence they will com-
prise the full energy spectrum, provided that we can show
they are independent. To investigate this question, let us look
at the inner product of these states.
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Using Eqs. �15� and �14� we find


�l,r,s��l�,r�,s�� =
1

2N 
�+�Bl	r�,s�	r�,s�Bl���+�

= �l,l�
�+�Bl	r+r�,s+s���+� . �20�

The right hand comprises of the inner product of two states,
namely, �
1�ª	r+r�,s+s���+� and �
2�ªBl��+�. In view of
the structure of 	r,s, we see that if �r+r� ,s+s��� �0,0�, then
the �
1� is a linear combination of − spin ups, arranged in
open strings, in a sea of spin +’s �from ��+��. For brevity we
call this a state of open strings. On the other hand and using
the same terminology, the state �
2� consists of only closed
loops. Therefore these two states have no terms in common
and their inner products will vanish unless �r+r� ,s+s��
= �0,0� or equivalently unless �r ,s�= �r� ,s��. Moreover by
expanding Bl it is clearly seen that 
�+�Bl��+�=1. Hence we
find


�l,r,s��l�,r�,s�� = �l,l��r,r��s,s�.

The independence of these states and the equality of their
number with the dimension of Hilbert space indicate that
they comprise the complete spectrum of the Hamiltonian. It
is also instructive to note the symmetry of the spectrum. If
we indicate by s the binary complement of the indices s �i.e.,
s̄i=1+si� and similarly for other indices, we find from Eq.
�18� that

El,r,s�J,K� = El,r,s�J,K� ,

El,r,s�J,K� = El,r,s�− J,− K� . �21�

The first relation expresses the twofold degeneracy, which is
the result of the topology of the surface, that is, the action of
the cycle Wz. Equation �4� on any state produces another
state with the same energy. For this, it is important to note
that the new state is independent from the original one, and
this is a result of topology. Since the operator Wz flips all the
spins around a nontrivial cycle of the manifold �the cylin-
der�, the original state consists of only trivial loops of flipped
spins. The other nonlocal operator that commutes with the
Hamiltonian, namely, Wx �see Eq. �5��, does not generate
another independent state, and it only gives a phase when
acting on any eigenstate and hence it does not generate de-
generacy.

The second relation indicates how the spectrum is af-
fected if we invert the coupling constants J and K around 0;
the spectrum should be inverted around the values rj = lj =0.
One should also note that only the ground and the top states
have twofold degeneracy and the degeneracy of the other
states is much larger.

C. Partition function and averages of different observables

From the complete spectrum it is straightforward to cal-
culate the partition function. One writes

Z��,J,K� = tr�e−�H�

= �
L,R,S

exp − �EL,R,S

= �
R,S

�
j

e�JRj�Sj−1Sj+1��
L

�
j

e�KLj

ª Z0��,J�Z1��,K� , �22�

where the last equality defines the partition functions Z0
ªZ0�� ,J� and Z1ªZ1�� ,K�. It is obvious that Z1
=2N coshN �K. Using a transfer matrix, we find

Z0 = �
S

� 2 cosh �J�Sj−1Sj + 1�

= 22N�cosh2N �J + sinh2N �J� . �23�

The full partition function is therefore given by

Z��,J,K� = 23N�cosh2N �J + sinh2N �J�coshN �K . �24�

In the thermodynamic limit, the average energy is obtained
from the partition function to be

�E

N
� = −

�

��
ln Z��,J,K� = − �2J tanh �J + K tanh �K� .

�25�

In the same limit the entropy is found from S
= �1−� �

�� �ln Z to be

S

N
= 3 ln 2 + 2 ln cosh �J + ln cosh �K − 2�J tanh 2�J

− �K tanh �K . �26�

The entropy can be written as a sum of two terms, namely,
S=N�Ss��J�+Sp��K��, where the first one is the contribution
of the vertex terms and the other is the contribution of
plaquette terms, and

Ss�x� = 2 ln 2 + 2 ln cosh x − 2x tanh 2x ,

Sp�x� = ln 2 + ln cosh x − x tanh x . �27�

Figure 2 shows the total entropy as a function of �J and �K.
An interesting nonlocal observable is the string operator

Wx defined in Eq. �4�. One finds


Wx� =
1

Z��,J,K� �l,r,s

�l�	r,sWx	r,s��l�exp − �El,r,s.

�28�

Passing 	r,s through Wx, one finds


�l�	r,sWx	r,s��l� = �− 1�r1+r2+¯+rN, �29�

where we have used the commutation relations of the opera-
tors and also the fact that WxBj =BjWx, ∀j, and consequently
Wx��l�= ��l�. Inserting this into Eq. �28� one arrives at
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Wx� =
1

Z0
�
R,S

�
j

Rje
�JRj�Sj−1Sj+1�, �30�

where again an appropriate transfer matrix gives the final
result


Wx� =
1

2N−1

sinhN 2�J

cosh2N �J + sinh2N �J
. �31�

In the thermodynamic limit this gives


Wx� = 1, T = 0

0, T � 0,
� �32�

which shows a phase transition at zero temperature. It is easy
to see that 
Wz�=0 at all temperatures.

III. REDUCED DENSITY MATRICES AND ENTROPIES
OF DIFFERENT SUBSYSTEMS

In this section we derive the reduced density matrices of
different subsystems at finite temperature. These subsystems
are denoted by A �the spins on one of the legs of the ladder�,
B �the spins of the totality of all the rungs of the ladder�, and
C �the spins of a subset of the rungs� �see Fig. 3�. The sig-
nificance of the subsystems B and C is that B corresponds to
a topologically nontrivial loop in the surface, while C corre-
sponds to a trivial curve and one expects that this difference
of topology shows itself in the entropy of these subsystems.
As we will show, this is indeed the case.

To prepare ourselves for the calculation of the reduced
density matrix at finite temperatures, in each case we first
derive the reduced density matrix of the relevant subsystem

when the whole system is at the state ��l�. The correspond-
ing density matrices will be denoted by �A, �B, and �C. This
will pave the way for determination of the reduced density
matrices at arbitrary temperatures, which will be denoted by
A, B, and C. We also use the notation ��+�A to denote the
restriction of the product state ��+� to the subsystem A with
similar notations for B and C.

A. Subsystem A: One leg of the ladder

We have

�A ª tr1�,2�, . . . ,N�
ˆ ���l�
�l�� , �33�

where for any subset I, Î means that we take the trace over
the complement of I.

To calculate the trace, we note that the state ��l� can be
written as follows:

��l� =
1

	2N �
m1,m2,. . .,mN

�− 1�exp��
i

limi�B1
m1 . . . BN

mN��+� ,

�34�

where the indices mi take the value of 0 or 1. We now use the
fact that Bi=ZiZi+1Zi�Zi�

and take the trace over the product
of the Bi operators to arrive at

tr1�,2�, . . . ,N�
ˆ �B1

m1B2
m2 . . . BN

mN��+�
�+�B1
k1B2

k2 . . . BN
kN�

= Z1�
m1Z2�

m2 . . . ZN�
mN�
�+�M��+��AZ1�

k1Z2�
k2 . . . ZN�

kN , �35�

where

M ª �Z1Z2Z1�
�m1+k1�Z2Z3Z2�

�m2+k2 . . . . �36�

FIG. 2. �Color online� The entropy of the ladder as a function of
the couplings and temperature.

FIG. 3. �Color online� The links with filled circles comprise of
the subsystems A-D. At any temperature, the subsystems A, C, and
D are in maximally mixed states. Only the subsystem B that has a
nontrivial topology has a different state �Eq. �49��.
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From the above equation we find


�+�M��+�A ª �m,k = �
i

�mi,ki
, �37�

which when inserted into Eq. �35� this gives

�A =
1

2N� �
m1,. . .,mN

Z1�
m1 . . . ZN�

mN��+�A
�+�Z1�
m1 . . . ZN�

mN�
= �1

2��m Zm�+ �
+ �Zm���N =
1

2NIA. �38�

This shows among other things that at zero temperature, each
of the two legs of the ladder is in a maximally mixed state.
The interesting point is that this situation persists at all tem-
peratures. To see this, we take the upper leg as our subsystem
A since, in this case, the analysis will be greatly simplified.
Since the system is symmetric, whatever we obtain will also
be valid for the lower leg. We have

trÂ���l,r,s�
�l,r,s�� = trÂ�	r,s��l�
�l�	r,s�

= trÂ���l�
�l�� =
1

2NIA. �39�

The reason for taking A to be the upper leg of the ladder is
that we could pass through the operator 	r,s cyclically within
the trace and arrive at the simple result that A�T�= 1

2N IA.
Obviously any subsystem of A will also be in a maximally
mixed state.

B. Subsystem B: All the rungs of the ladder

Consider now subsystem B as the full set of rungs of the
ladder. We first derive the reduced density matrix �B when
the whole ladder is in the state ��l�. Using decomposition
�34� and the structure of Bi operators �2�, we find

�B =
1

2N �
m1,. . .,mN,k1,. . .,kN

�− 1�exp��
i

li�mi + ki��
�

B̂

�+�Nm,k��+�B̂�
m�

k� , �40�

where

Nm,k ª �
i

�Zi�Zi�
�mi+ki �41�

and

�
m� ª �Z1Z2�m1 . . . �ZNZ1�mN��+�B. �42�

Using the fact that
B̂

�+�Nm,k��+�B̂=�m,k, inserting the result

in Eq. �40�, noting the two-to-one correspondence between
the indices mi and the powers of Zi, and rearranging terms,
we obtain

�B =
1

2N−1 �
q1,. . .,qN−1

�
̃q�

̃q� , �43�

where

�
̃q� ª Z1
q1Z2

q2 . . . ZN
q1+q2+¯+qN−1��+�B. �44�

Note that this is independent of the index set l of the state

��l�. Also in each state �
̃q� the flip operators come in pair,
so this state is an even parity state, i.e., a state where an even
number of spins has been flipped from + to −. The state �B is
thus a uniform mixture of all even parity states. We call this
density matrix �even. Let us now consider finite temperatures,
for which we have to calculate

tr1,2, . . . ,Nˆ ���l,r,s�
�l,r,s�� = tr1,2, . . . ,Nˆ �	r,s��l�
�l�	r,s�

= 	r�
�even�	r, �45�

where 	r=�iZi
ri. The reduced density matrix at finite tem-

perature will now be given by

B�T� =
1

Z0
�
r,s

exp − �Er,s	r�
even	r. �46�

From the above definition of 	r and that of �even and �
̃q�,
one finds that

	r�
�even�	r = �even, �r� = 0

�odd, �r� = 1,
� �47�

where �odd is the uniform mixture of odd-parity states and �r�
denotes the degree of r, i.e., �r�=r1+r2+ ¯+rN.

Inserting this into Eq. �46� yields

B�T� =
1

2Z0
�
r,s

exp − �Er,s��1 + �− 1��r���even

+ �1 − �− 1��r���odd� . �48�

Using the expression of the parity �r� and Eqs. �28� and �29�
we find the following simple expression:

B�T� =
1

2
�1 + 
Wx���even +

1

2
�1 − 
Wx���odd

=
1

2NIB +
1

2

Wx���even − �odd� , �49�

where use has been made of the fact that 1
2 ��even+�odd�

= 1
2N IB. The entropy of this state, which is a mixture of or-

thogonal states, can now be readily calculated. A straightfor-
ward calculation gives

S�B� = N − 1 + H�1 + 
Wx�
2

� , �50�

where H�p�=−p log2 p− �1− p�log2�1− p� is the Shannon en-
tropy function.

Figure 4 shows SB
− �N−1� for several values of system

sizes N. In the thermodynamic limit, there is a sharp rise in
this quantity only at zero temperature, but for finite N, it is
also seen that there is an almost sharp rise at finite tempera-
tures.

C. Subsystem C: A subset of the rungs

Once the density matrix of the subsystem B is obtained,
we can trace out any number of the rungs to find the reduced
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density matrix of the remaining subset of rungs. Using Eq.
�49� and noting that on taking the trace over any subsystem
the contributions of �even and �odd cancel each other, one
arrives at the simple result that

C =
1

2�C� IC, ∀ T , �51�

where C is any proper subset of the rungs and �C� is the size
of this subset. It is interesting to note that how the topology
of the surface is reflected in the entropy of its subsystems.

D. Thermal entanglement of two spins

From the reduced density matrices found in previous sub-
sections, we know that any two spins on a leg of the ladder
are in a maximally mixed state = 1

4 I and hence there is no
thermal entanglement between such spins. The same is true
between any two spins on the rungs of the ladder. In fact, it
has been shown28 that in the ground state, there is no en-
tanglement between any two qubits. However one can ask if
at higher temperature some degree of entanglement is caused
by thermal fluctuations. This indeed happens in some spin
systems below a certain threshold temperature. To investi-
gate this, we compute the reduced density matrices of the
two spins, say, 1� and 1� in Fig. 3 on the two legs, opposite
to each other. We call this subsystem D. The first step is to
calculate trD̂��l,r,s�
�l,r,s� that is equal to

1

2N trD̂�	r,sBl��+�
�+�	r,sBl� =
1

2NZ1�
s1 trD̂�Bl��+�
�+�Bl�Z1�

s1 .

In calculating the trace, one can use the cyclic property of
the trace and move around all the terms �1+ �−1�liBi� except
the term 1+ �−1�l1B1 �which acts nontrivially on the space D�
and use the property �1+ �−1�liBi�2=2�1+ �−1�liBi�, which af-
ter some algebra gives

trD̂�Bl��+�
�+�Bl�

= 2N−1 trD̂�
i�1

�1 + �− 1�liBi��1 + �− 1�l1B1�

���+�
�+��1 + �− 1�l1B1��
= 2N−1 trD̂��1 + �− 1�l1B1���+�
�+��1 + �− 1�l1B1��

= 2N−1��+ + �
+ + � + �− − �
− − ��1�,1�
, �52�

where in the second line we have used the fact that the closed
loops generated by any of Bi’s cannot be compensated by B1
to make a nonvanishing trace and the third line is the result
of explicit expansion and calculation. We will then have

D =
1

2Z
�
l,r,s

exp − �El,r,sZ1�
s1��+ + �
+ + � + �− − �
− − ��1�,1�

Z1�
s1 .

�53�

Acting the operators Z1�
s1 on both sides and performing the

above simple calculation with the help of the transfer matrix,
we find that D= 1

4 ID, which means that there is no thermal
entanglement between these two spins.

IV. COMPLETE SPECTRUM OF THE THREE-LEG
LADDER

What has been done for the two-leg ladder can be ex-
tended to three-leg ladder �Fig. 5� without much effort. The
first step is to define the states

��l� =
1

2N�
p

�1 + �− 1�lpBp���+� , �54�

and then the trick is to find a suitable generalization for the
operators 	r,s, so that their action on the above state pro-
duces the correct number of independent eigenstates of the
vertex operators. The suitable generalization is as follows:

	r,s,t ª �
i=1

N

Zi
riZi�

siZi�
ti , �55�

where the flipping operators correspond to the links shown in
Fig. 6.

One can now easily verify the following commutation re-
lations, where we use Aj

+, Aj
0, and Aj

− for vertex operators on
site j for the lower, middle, and upper legs of the ladder,
respectively,

FIG. 5. �Color online� The labeling used in the text for the links
on the three-leg ladder.

FIG. 4. �Color online� Thermal entanglement of subsystem B
with the rest of the lattice as a function of temperature for different
system sizes. The system sizes are 10, 20, 30, 40, and 100.

COMPLETE CHARACTERIZATION OF THE SPECTRUM OF… PHYSICAL REVIEW B 79, 214435 �2009�

214435-7



Aj
+	r,s,t = �− 1�rj	r,s,tAj

+,

Aj
0	r,s,t = �− 1�sj−1+sj+rj+tj	r,s,tAj

0,

Aj
−	r,s,t = �− 1�tj	r,s,tAj

−. �56�

One can proceed along the same way as detailed in Sec. II
for the two-leg ladder and show that the states ��l,r,s,t�
ª	r,s,t��l� are energy eigenstates with energies given by

E = − J�
i

�RiTiSi−1Si + Ri + Ti� − K�
i

Li, �57�

where again we have used Ising-like variables, i.e., Tiª �
−1�ti instead of the binary variables. Moreover the number of
these states is 25N that is equal to the dimension of the Hil-
bert space and they are orthogonal �see the reasoning follow-
ing Eq. �20��.

The basic point is that every conceivable combinations of
the flipping operators in 	r,s,t, corresponding to Fig. 6 when
acting on ��+�, will produce only open or homologically
trivial loops of negative spins that will certainly be orthogo-
nal to the state generated by Bl acting on ��+�. The partition
function turns out to be

Z��,J,K� = 25N cosh2N �K�cosh3N �J + sinh3N �J� .

�58�

V. GENERALIZATION TO TWO-DIMENSIONAL SQUARE
LATTICE

To what extent this study can be pursued for the two-
dimensional lattice �i.e., a torus�? On a lattice with N2 sites
and 2N2 links, the Hilbert space dimension is 22N2

. We can
already construct 2N2

�un-normalized� states of the form
��l�ª�p�1+ �−1�lpBp���+�, which are energy eigenstates. To
find more states, we have to find subsets I of flipping opera-
tors and then construct operators of the form 	sª�i�IZi

si

and energy eigenstates as ��s,l�=	sBl��l�. The subset I
should have the following important property: when acting
on ��+�, no combination of links in I should be able to gen-
erate a homologically trivial loop of negative spins on the
lattice. Let Imax be a maximal set of this type with �Imax�
elements. Then the total number of independent energy
eigenstates found in this way is 2N2+�Imax�.

For the square lattice of N2 sites, one such set is shown in
Fig. 7, where �Imax�=N2. In fact, Imax is nothing but a one

cycle that goes back and forth around the torus but does not
wrap around it and comprises half of the links on the net-
work. We call the maximal cycle since it is the cycle that
contains the maximal set of links �the addition of any link to
this cycle will make a trivial loop out of it� or the excitation
curve since flipping operators chosen from it and acting on
��l� create all the excited states.

Since �Imax�=N2, the states constructed as ��m,l�
=	mBl��l� form the whole set of energy eigenstates. Num-
bering the links along the boldface curve shown in Fig. 7, in
a consecutive way from 1 to N2, shows that the energy of

such a state is equal to Es,l=−J�i=1
N2

SiSi+1−K�iLi, where we
have used the Ising-type labels Siª �−1�si and Li= �−1�li in-
stead of the binary labels si and li. This leads to the partition
function

Zsquare lattice��,J,K� = 22N2
coshN2

�K�coshN2
�J + sinhN2

�J� .

�59�

Remark 1. We could have taken just such a canonical
curve for the two and three leg ladders instead of the ones
shown in Fig. 6, although it may have rendered the calcula-
tions of reduced density matrices in these simple cases un-
necessarily involved. The curves shown in Fig. 6 can be
obtained from this canonical curve by the moving up and
down the horizontal links appropriately, which amounts to
application of plaquette operators. Such plaquette operators
affect the eigenstate by only a phase.

Remark 2. As is clear from Eq. �58� and the argument
preceding it, the partition function of the Kitaev model is the
same as that of two noninteracting chains of spins in mag-
netic fields of strength J and K. This is particularly clear
from Eq. �58� if we take the thermodynamic limit. Note that
there is not even a nearest-neighbor interaction between the

FIG. 6. The flipping operators are chosen form the set of links
shown in bold, �A� for the two-leg ladder and �B� for the three-leg
ladder.

FIG. 7. �Color online� The excitation curve for the two-
dimensional lattice, the curve from which the flipping operators are
chosen for creation of the energy eigenstates. The links in red �the
ones in the top and right of the lattice� indicate identical links on the
other sides of the lattice due to the torus topology.
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spins in these chains and only magnetic fields J and K con-
trol the interactions. Does this imply that a local redefinition
of degrees of freedom can map the Kitaev model to such a
simple system? Although its possibility cannot be ruled out,
it is far from clear that such a mapping, even if it exists, has
a simple form. Let us look at the very definition of Hamil-
tonian �1�. The partition function turns out to be

Z = trexp���J�
s

As + K�
p

Bp��� = tr��
s

e�JAs�
p

e�KBp� ,

�60�

where the last equality is a result of the commutativity of all
the operators As and Bp that act on the links of the lattice. If
we could find an isomorphism between the 22N2

dimensional
Hilbert space of the lattice and another one where the opera-
tors As and Bp could be represented as tensor product opera-
tors with disjoint support, i.e., Asª I�s−1 � A � I��N2−s�, then
the above trace could be broken to �str�e�JAs��ptr�e�KBp� di-
rectly leading to Eq. �59� in the thermodynamic limit.

To gain further insight into this problem, let us look at the
Ising model in a one-dimensional open chain, defined by the
Hamiltonian

HIsing = J�
k=1

N−1

�z,k�z,k+1. �61�

The Hilbert space consists of tensor product of two-
dimensional spaces on the vertices of the chain, with basis
states �+� and �−�. Inspired by the form of the interaction
energy that gives equal energies to the states �++� and �−−� or
to the states �+−� and �−+�, one can construct a new Hilbert
space comprised of tensor product of states on the links �Fig.
8�. Such a mapping is done by local projection operators of
the form

P ª �1��
+ + � + 
− − �� + �− 1��
+ − � + 
− + �� . �62�

These projection operators turn the original Hilbert space on
the vertices to the new Hilbert space on the links and the

bilocal operators �z,k�z,k+1 on the neighboring vertices to lo-
cal operators �z,i on the links. Ising Hamiltonian �61� will be
projected to that of a simple chain of noninteracting spins in
an external magnetic field J.

It is obvious that such a mapping is not possible for the
one-dimensional periodic chain or for the two-dimensional
Ising model. In view of the simple form of the partition
function of the Kitaev model and its spectrum, defined in this
section, it may be possible to find such a map �homomor-
phisms between the Hilbert spaces�, however, I guess that
this is a highly nontrivial task. In this regard, Fig. 7 may give
a clue as to how such a mapping should be defined.

VI. DISCUSSION

We have determined the complete spectrum of the Kitaev
model on a spin ladder and from there we have determined
the reduced density matrices for its various subsystems at
finite temperature. We have shown that on two- and three-leg
ladders, the model is equivalent to particular types of one-
dimensional classical Ising models, models with different
spins on the sites and links. The calculations in these models
have led to the insight for obtaining the spectrum of the
two-dimensional lattice.

Knowing the full spectrum in this way will enable us to
study the entanglement and many other properties of the Ki-
taev model in detail. Furthermore this knowledge may be
useful in other more detailed studies of the Kitaev model,
where the dynamics of the model is required, for example, in
the study of dynamics of classical and quantum phase tran-
sitions in systems with topological order, mentioned in Sec.
I.30 Another interesting context is the study of autocorrela-
tion times of the toric code, which is related to the important
problem of how long quantum information can be protected
in topological degrees of freedom in a background of inevi-
table thermal fluctuations. This later problem was first ad-
dressed in Refs. 32 and 33, in which among other things a
mapping of the spectrum of the Kitaev model to two un-
coupled Ising chains was found.

Another important problem that may be treated in an al-
ternative way by the characterization of spectrum in the way
shown in this paper is the problem of sustainment of topo-
logical order at finite temperatures. This problem has been
studied in a number of works24,34,35 using a different descrip-
tion of the spectrum.
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